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Abstract—Graphs are naturally used to describe the structures
of various real-world systems in biology, society, computer science
etc., where subgraphs or motifs as basic blocks play an important
role in function expression and information processing. However,
existing research focuses on the basic statistics of certain motifs,
largely ignoring the connection patterns among them. Recently, a
subgraph network (SGN) model is proposed to study the potential
structure among motifs, and it was found that the integration of
SGN can enhance a series of graph classification methods.
However, SGN model lacks diversity and is of quite high time
complexity, making it difficult to widely apply in practice. In this
paper, we introduce sampling strategies into SGN, and design a
novel sampling subgraph network model, which is scale-
controllable and of higher diversity. We also present a structural
feature fusion framework to integrate the structural features of
diverse sampling SGNs, so as to improve the performance of
graph classification. Extensive experiments demonstrate that, by
comparing with the SGN model, our new model indeed has much
lower time complexity (reduced by two orders of magnitude) and
can enhance a series of graph classificationmethods.

Index Terms—network sampling, subgraph network, feature
fusion, graph classification, biological network, social network.

I. INTRODUCTION

NETWORKS or graphs are frequently used to capture var-

ious relationships that exist in the real world, and thus

we witness the emergence of social networks [1]–[3], traffic

networks [4]–[6], biological networks [7]–[9], literature cita-

tion networks [10], [11], etc. The recently proposed graph

representation methods allow us to better understand the struc-

tures of these networks and promote the development of vari-

ous disciplines. Interestingly, the early graph embedding

methods were benefited from natural language processing [12],

while now the graph neural networks (GNN) are used to suc-

cessfully deal with visual semantic segmentation [13]. Fur-

thermore, these graph embedding methods have made

remarkable achievements in such areas as recommendation

systems [14], [15], QA sites [16], [17], and even drug discov-

ery [18], [19]. In fact, network science, together with machine

learning (especially deep learning), has made an important

contribution to the development of cross-disciplines. For

instance, in drug discovery, Li et al. [20] introduced a dummy

super node that is connected with all nodes in the graph by a

directed edge as the representation of the graph and modified

the graph operation to help the dummy super node learn

graph-level feature, which can handle graph-level classifica-

tion and regression for discovering small molecule drugs. Gao

et al. [21] provided biological interpretation using two-way

attention mechanism through making predictions of unob-

served examples (proteins and drugs) on an evaluation dataset

from BindingDB.

Subgraphs or motifs [22], [23], as basic building blocks,

can be used to describe the mesoscale structure of a network.

The networks constructed by different subgraphs may have

vastly different topological properties and functions, and thus

could be integrated into many graph algorithms to improve

their performances. For instance, after extracting the root sub-

graph with a modified skip-gram model, Narayanan et al. [24]

proposed Subgraph2Vec as an unsupervised representation

learning method, leading to good performance on graph clas-

sification. Ugander et al. [25] treated subgraph frequencies in

social networks as local attributes and found that subgraph

frequencies do provide unique insights for identifying social

and graph structures of large networks. Inspired by neural

document embedding models, Nguyen et al. [26] proposed

the GE-FSG method, which adopts a series of frequent sub-

graphs as the inputs of the PV-DBOW model to obtain the

entire-graph embeddings, achieving good performance in

graph classification and clustering. These studies focus more

on the basic statistics, e.g., the number of subgraphs, but lack

analysis of the underlying structure among these subgraphs.

The recently proposed subgraph network (SGN) model [27]
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takes the above issue into consideration and connects differ-

ent subgraphs to construct a new network at a higher level.

This process can be iterated to form a series of SGNs of dif-

ferent orders. It has been proven that SGNs can effectively

expand the structural space and further improve the perfor-

mance of network algorithms.

However, SGN model has the following two shortages.

First, the rule to establish SGN is deterministic, i.e., users can

generate only one SGN of each order for a network. Such lack

of diversity will limit the capacity of SGN to expand the latent

structure space. Second, when the number of subgraphs

exceeds the number of nodes in a network, the generated SGN

can be even larger than the original network, which makes it

extremely time-consuming to process SGNs of the higher-

order, letting alone integrating these SGNs to design algo-

rithms of better performances. On the other hand, it is noted

that network sampling can increase the diversity by introduc-

ing the randomness, and meanwhile control the scale, provid-

ing an effective and inexpensive solution for network

analysis. This merit thus is exactly complementary to the SGN

model.

In this paper, we introduce network sampling into the SGN

model, and proposes Sampling SubGraph Network (S2GN). In
particular, we utilize the following four network sampling

strategies, including random walk, biased walk, link selection,

and spanning tree, to sample a subnetwork containing certain

numbers of nodes and links, and then map the subnetwork to

SGN based on certain rules. Network sampling and SGN con-

struction can be used iteratively, so as to create a series of

S2GN of different orders, whose structural features can then

be fused with those of the original network, so as to enhance a

number of network algorithms. Specifically, we have the fol-

lowing contributions:

� We propose a new network model, sampling subgraph

network (S2GN), by introducing network sampling into

SGN. Compared with SGN, our S2GN can increase the

diversity and decrease the complexity to a certain

extent, benefiting the subsequent network algorithms.

� We propose feature fusion to fully utilize the structural

information extracted from S2GNs of different orders,

generated by different sampling strategies, to enhance

various graph classification algorithms based on manual

attributes, Graph2Vec, DeepKernel, and CapsGNN.

� We apply the new method to nine real-world network

datasets, and our experimental results demonstrate the

effectiveness and efficiency of S2GN. The fusion of

S2GNs generated by different sampling strategies can

increase the performance of graph classification algo-

rithms in 33 out of 36 cases, with a relative improve-

ment of 9.58% on average (4.68% for SGN). This value

increases to 12.96% (2.06% for SGN) when only

CapsGNN is considered, i.e., the combination of S2GN-
Fusion and CapsGNN achieves the F1-Score 80.58%

on average, greatly improving the graph classification

performance. More remarkably, compared with SGN,

generating S2GNs needs much less time, reduced by

almost two orders of magnitude.

The rest of the paper is structured as follows. In Sec. II, we

briefly describe the related work in network sampling and fea-

ture extraction. In Sec. III, we introduced the construction

method of S2GN. In Sec. IV, we give several feature extrac-

tion methods, which together with S2GN are applied to nine

real-world network datasets. Finally, we conclude the paper

and highlight some promising directions for future work in

Sec. V.

II. RELATED WORK

In this section, to supply some necessary background infor-

mation, we give a brief overview of network sampling strate-

gies and graph representation algorithms in graph mining and

network science.

A. Network Sampling

Our work is closely related to the line of research in the net-

work analysis based on sampling. Sampling methods in graph

mining have two main tasks: generating node sequences and

limiting the scale of the network. For the former, many studies

utilize sampling strategies to extract node sequences to pro-

vide materials for subsequent network representation. Random

walk [28] is one of the most famous node sampling methods,

which has a wide influence in the field of graph mining [29],

[30]. For example, DeepWalk [31] combined the random walk

with the language model in NLP, which was applied to node

classification as a graph embedding method. In addition,

Grover and Leskovec [32] designed a biased walk mechanism

based on random walk, which had a further improvement in

node classification. Breadth-First Sampling [33] is a node

sampling algorithm, which is biased to the nodes of high

degrees and has been successfully applied in the measurement

and topological analysis of OSNs. By limiting the scale of a

network, Satuluri et al. [34] sparsified graphs and achieved

faster graph clustering without sacrificing quality. Moreover,

sampling on graphs also has a wide spectrum of applications

on network visualization [35]. The sampling method can sim-

plify the network while preserving significant structure infor-

mation, which is of ultra importance in graph mining.

B. Graph Representation

The most naive network representation method is to calcu-

late graph attributes according to certain typical topological

metrics [36]. Early graph embedding methods were consider-

ably affected by NLP. For example, as graph-level embedding

algorithms, Narayanan et al. proposed Subgraph2Vec [24]

and Graph2Vec [37], which achieve good performances on

graph classification. Another popular approach is to use graph

kernel methods to capture the similarity between graphs.

Although representing networks well, they generally have rel-

atively high computational complexity [36]. It is worth men-

tioning that the WL kernel [38] was used to make the

subgraph isomorphism check more effective. On this basis,

Yanardag and Vishwanathan [39] proposed an alternative
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kernel formulation termed as Deep Graph Kernel (DeepKer-

nel) which achieved good performances on several datasets.

With the rise of spectral analysis of graph data in recent

years, graph convolutional neural network (GCN) has been

developed. It uses the Laplace decomposition of graphs to

achieve convolutional operation in the spectral domain.

Inspired by the idea of localized first-order approximation of

spectral graph convolutions, Kipf et al. [40] presented a scal-

able approach for semi-supervised learning on graph-struc-

tured data (citation networks such as Citeseer, knowledge

graphs such as NELL, etc.) which achieved good performan-

ces. Later, mathematical analysis on GCN went further and

proved that the Laplacian decomposition used by GCN and

Laplacian smoothing on images have mathematically equiva-

lent forms [41]. At the same time, GCNs in the spatial domain

have also been proposed. Inspired by the idea of convolution

kernels in CNN, Mathias et al. [42] proposed the method of

PATCHY-SAN, which can determine the direction of the con-

volutions and the order of the nodes in the convolution win-

dow, and this model also achieved good results in graph

classification. In this way, GCN treats the obtained informa-

tion without weighting, i.e. the information of important

neighbors and non-important neighbors will be put into the

convolution layer in an unbiased manner. GAT overcomes

this shortage by supplementing a self-attention coefficient

before the convolution layer [43]. Based on the newly pro-

posed capsule network architecture, Zhang et al. [44] designed

a CapsGNN to generate multiple embeddings for each graph,

thereby capturing the classification-related information and

the potential information with respect to the graph properties

at the same time, which achieved the good performance.

Although the above graph representation methods have rel-

atively high expressiveness and learning ability, largely

improving the performance of graph classification, they do not

have good interpretability, and in addition, they only rely on a

single network structure, limiting their ability to exploit the

latent structural space. Therefore, we generate multiple S2

GNs to fully expand the latent structural space, so as to

enhance the network algorithms. Our experiments have dem-

onstrated that S2 GNs can be naturally integrated with many

graph representation methods by our feature fusion framework

for the further improvement of their effectiveness.

III. METHODOLOGY

We first briefly review SGN and the four network sampling

methods. Then we introduce the framework to establish S2GN.

A. Subgraph Network

Subgraph network (SGN) [27] is considered as a mapping

function in network space. It provides a scalable model that

transforms the original node-level network into a subgraph-

level network. As shown in Fig. 1, the SGN in Fig. 1(b) can be

obtained by SGN mapping from the original network in Fig. 1

(a). One can see that the edges of different colors in (a) are

mapped into the corresponding nodes in (b), which are

naturally connected depending on whether they share the

same node in the original network.

Formally, given an undirected network G ¼ ðV;EÞ as an

original network, where V and E are the node and edge sets,

respectively. Let Vi � V and Ei � E. Then, gi ¼ ðVi; EiÞ is a
subgraph of G. The SGN, denoted by Gs ¼ L ðGÞ, is a map-

ping from G to Gs ¼ ðVs; EsÞ, where the node and edge sets

are denoted by Vs = fgiji ¼ 0; 1; 2; . . .; ng and Es �
ðVs � VsÞ. If ga \ gb 6¼ ;, i.e., ga \ gb 2 V , in the original net-

work, then they are connected in the SGN, i.e., ðga; gbÞ 2 Es.

It can be seen that the construction of SGN has three steps: (i)

detect subgraphs fgig from the original network; (ii) clear and

define the connection rules between subgraphs; (iii) build

SGN by leveraging the subgraphs.

For simplicity, here for the case of 1st-order SGN, denoted

by SGNð1Þ, pairwise linked nodes are chosen as building units,

and the adjacent node pairs are connected. In this case,

SGNð1Þ is equivalent to the line graph [45], which reveals the

topological interaction between edges of the original network.

Fu et al. [3] used this method to map the original network to

an SGN, and then used the node centrality in SGN to predict

the weights of edges of the original network. As the SGN

gradually maps to the higher-order network space, one can

observe more abundant feature information. For example, the

2nd-order subgraph network, denoted by SGNð2Þ, is obtained
by repeating the mapping process on the SGNð1Þ. The building
unit of SGNð2Þ is a 2-hop structure (open triangle), which

maintains the 2nd-order interactive information of the edge

structures and can provide more insights about the local struc-

ture of a network [46]. To reduce the density of SGN, in the

case of SGNð2Þ, two building units are connected when they

share the same edge. The latent structural information pro-

vided by higher-order SGNs may steadily diminish as the

order increases. Therefore, SGN generally works best with the

first two orders [27].

B. Network Sampling Strategies

In this paper, we adopt the following four sampling strate-

gies, including random walk, biased walk, link selection, and

spanning tree, to design our S2GN.
Random Walk: Random walk [47] can be used to obtain the

co-occurrence relationship between nodes during network

sampling. A node in a network can be described by the wan-

dering sequence starting from it. The wandering sequence

obtained from the node contains both local and higher-order

neighbors. When the wandering scope is extended to the graph

level, one can peek into the topology of the whole network. In

Fig. 1. Schematic diagram of SGN construction.
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our model, given a network G ¼ ðV;EÞ, the random walk

algorithm is described as follows:

� Start with an initial node v0 2 V .

� At step i, choose one neighbouring node u 2 Nðvi�1Þ.
� Let vi  u be the next node and get the edge bE  bE þ fðvi�1; viÞg.
� Repeat the steps until j bEj ¼ jV j.
Node vi is generated by the following distribution:

P ðvi ¼ xjvi�1 ¼ mÞ ¼
a
N ; ifðm;xÞ 2 E
0; otherwise

�

where a is the transition probability between nodes m and x,
and N is the normalizing constant. One can follow the above

steps to simulate a random walk and get the final substructurebG ¼ ð bV ; bEÞ.
Biased Walk: In the field of network science, biased walk

[48] is different from the random walk where the probability of

a potential new state is independent of external conditions.

When the network is too large to be analyzed by statistical

methods, the directed walk extracts the flexible neighborhood

of the undirected network according to certain rules, which pro-

vides an effective method for structural analysis. The concept

of the biased walk has attracted considerable attention, espe-

cially in the fields of transportation and social networks [49].

Here, we adopt the walking mechanism of Node2Vec [32],

where the homophily and structural equivalence of nodes are

preserved by integrating the depth-first search and breadth-first

search. Specifically, we adopt the 2nd-order random walk with

parameters p and q, which takes into account the topological

distance between the next node and the previous node as well

as the connectivity of the current node. Thus, the transition

probability a between vi and viþ1 is determined by

aðvi;viþ1Þ ¼ vpqðvi�1; viþ1Þ ¼
1
p ; dðvi�1;viþ1Þ ¼ 0
1; dðvi�1;viþ1Þ ¼ 1
1
q ; dðvi�1;viþ1Þ ¼ 2

8<
:

where vi�1, vi, and viþ1 are the previous, current, and next

nodes, respectively, and dðvi�1;viþ1Þ 2 ð0; 1; 2Þ indicates the

shortest path between vi�1 and viþ1. Note that a is equal to

vpq when the network is unweighted. Various substructures of

network can be obtained by controlling p and q.

Link Selection: We also propose a new edge-based sampling

method, namely link selection. Given a networkG ¼ ðV;EÞ, we
first sample an initial edge e0 ¼ ðv0; v1Þ, and then randomly

select a node of this edge as the source node of the next sampling

edge. The nodes of all the sampled edges form the source node

pool Vpool for the next sampling. The sampling process will not

terminate until the stop condition is met. The substructures after

this sampling strategy are obtained by a diffuse search from a

central edge, which ensures the acquisition of important network

structures. As shown in Fig. 2, the node pair (1,2) is selected as

the initial edge and then we can get the substructure that contains

nodes (1,2,3) after one iteration through node “2” and get an

expanding substructure that contains nodes (1,2,3,4) after second

iteration through another node “1”. After several iterations, one

can get the final substructure, which contains 7 nodes and 8

edges while the program satisfies the stop condition.

� Start with an initial edge e0 ¼ ðv0; v1Þ 2 E, and let

Vpool ¼ fv0; v1g, Epool ¼ fe0g.
� At step i, choose one node u 2 Vpool.

� Let ui  u be the next start node and select an edge

ðui; uiþ1Þ =2 Epool.

� Update Vpool  Vpool þ fuiþ1g and get the edge pool

Epool Epool þ fðui; uiþ1Þg.
� Repeat the above steps until jEpoolj ¼ jV j.
Note that ðui; uiþ1Þ has the same transition probability with

the random walk, and Vpool and Epool are the node and edge

sets of the final substructure bG. This method differs from ran-

dom walk in that it can search the network on the basis of the

current substructure rather than a single node, which can

reduce the appearance of a chain structure to a greater extent.

Spanning Tree: A spanning tree [50] is a minimally con-

nected substructure that contains all nodes in the graph, as

shown in Fig. 3. Different spanning trees can be obtained by

traversing from different nodes. Here we randomly select a

node as the initial node. The maximum and minimum spanning

trees are unified without considering the edge weights. In this

section, we use the typical Kruskal algorithm [51] to generate

spanning trees and the weight values of edges are all set to 1.

C. Framework for Constructing S2GN

Most real-world networks have large scale and complex

structure. Typically, SGN could be even larger and denser,

making the follow-up network algorithms less efficient. It will

introduce extra noisy structural information, disturbing the

network representation algorithms. In view of this, we focus

on optimizing the SGN model and propose a framework for

constructing a sampling subgraph network (S2GN) by inte-

grating different network sampling methods. The pseudocodes

Fig. 2. Illustration of the walk procedure in link selection.

Fig. 3. The substructure obtained by spanning tree.
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of constructing S2GN and sampling substructures are given in

Algorithms 1 and 2, respectively. In Algorithms 1, GetMax-

Substructure() is to obtain the maximally connected substruc-

ture of original network if it is not connected; NodeRanking()

is to rank the input nodes; SGNAlgorithms() is to construct

SGNs. GetNextEdgeWithStrategy() in Algorithms 2 is to get

the next edge according to a given sampling strategy.

In general, S2GN can be constructed in three steps: source

node selection, sampling substructure and S2 GN construction,

which are introduced in the following.

� Source node selection: There are many ways to choose

the initial node: (i) Randomly select a node as the

source node; (ii) Select an initial node according to its

importance measured by closeness centrality [52], K-

shell [53], PageRank [54] or others [55]. Our frame-

work can be combined with various central node selec-

tion methods. In this paper, we use the K-shell

decomposition method to make a coarse-grained divi-

sion of the importance of nodes in the network, so that

it is more likely to capture key structures.

� Sampling substructure: After the initial source node is

determined, a substructure can be obtained by conduct-

ing a certain sampling strategy to extract the main con-

text of the current network. According to different

sampling strategies, diverse sampling substructures can

be generated, reflecting the different aspects of the orig-

inal network and further benefiting the subsequent net-

work algorithms.

� S2GN construction: Based on the sampling substructure,

we use SGN model to construct S2GN. Note that net-

work sampling and SGN are adopted iteratively so as to

get the S2GNs of higher orders. This method can control

the size of S2GNs and meanwhile increase their diver-

sity. Therefore, compared with SGN, the S2GN could

further enhance both efficiency and effectiveness of the

subsequent network algorithms.

Now, we use various feature extraction methods to get

structural features from S2GNs of different orders, which are

first fused and then used to establish the graph classification

models. The overall framework of S2GN construction for

structural feature space expansion is shown in Fig. 4. Note

that, generally, information fusion tries to integrate informa-

tion from multiple aspects to improve algorithm performance,

which has a wide range of applications in practice. For

instance, in speech recognition, the visual features of the lip

motion are fused with the speech signal features to predict the

words expressed [56]. In image recognition, Xuan et al. [57]

developed a multistream convolutional neural network to

automatically merge the features of multi-view pearl images,

so as to improve the accuracy of pearl classification. In this

paper, we use different sampling strategies to capture the

structural features from different aspects. As an example, we

visualize different 1st-order and 2nd-order S2GNs generated

by the four network sampling strategies on positive and nega-

tive samples from the MUTAG dataset, as shown in Fig. 5. It

can be seen that the S2GNs generated by different sampling

strategies have quite different structures, and the structural dif-

ference between the positive and negative samples may be

enlarged in S2GNs. Therefore, it can be expected that the

fusion of these diverse S2GNs could improve the performance

of graph classification.

IV. EXPERIMENTS

Now, we compare S2GN and SGN models on their abilities

to enhance graph classification based on four feature extrac-

tion methods. We first introduce the datasets, followed by the

feature extraction methods and the parameter setting. After

that, we show the experimental results with discussion.

A. Datasets

We test our S2GN method on nine real-world network data-

sets, as introduced in the following. IMDB-BINARY is about

social networks, while the others are about bio- and chemo-

informatics networks. The basic statistics of these datasets are

presented in Table I.

Algorithm 1. Construction of S 2 GN

Input: A network GðV;E) with node set V and link set

E � ðV � V Þ;
The order of SGN h.
Output: S 2 GN, denoted by GsðVs; Es).

1 Initialize a temporary object Gs;

2 if the G is not full-connected then

3 Gs GetMaxSubstructure(G);

4 end

5 else

6 Gs G;

7 end

8 while h do

9 Initial node u = NodeRanking(Vs);

10 Get sampling substructure cGs through executing Algorithm 2;

11 Gsgn = SGNAlgorithms(cGs);

12 Gs Relabeled(Gsgn);

13 h ¼ h� 1;
14 end

15 return GsðVs; Es)

Algorithm 2. Sampling substructure

Input: A network GsðVs; Es);

Source node u;
Sampling walks l ¼ jVsj.
Output: Sampling substructure, denoted by cGs = gðbv; be).
1 Let v0 = u, initial walkv to [v0], walke to ;;
2 Select first edge e1 with a given probability of sampling strategy;

3 Append the v1 = dstðe1) to walkv, e1 to walke;
4 for i ¼ 2 to l� 1 do
5 curv = walkv[-1], cure = walke[-1];
6 ei = GetNextEdgeWithStrategy(curv, cure);
7 Append ei to walke, vi = dstðeiÞ to walkv;
8 end

9 bv = walkv, be = walke;
10 return cGs = gðbv; be)
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� MUTAG [58] contains 188 mutagenic aromatic and

heteroaromatic compounds, with nodes and edges

representing atoms and the chemical bonds between

them, respectively. They are labeled according to

whether there is a mutagenic effect on a special

bacteria.

� PTC [59] includes 344 chemical compound graphs,

with nodes and edges representing atoms and the

Fig. 5. Visualization of 1st-order and 2nd-order S 2 GNs using four network sampling strategies on positive and negative samples from the MUTAG dataset.

Fig. 4. The overall framework of the S 2 GN algorithm for network structural feature fusion.
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chemical bonds between them, respectively. Their

labels are determined by their carcinogenicity for rats.

� PROTEINS [60] comprises of 1113 graphs. The nodes

are Secondary Structure Elements (SSEs) and the edges

are neighbors in the amino-acid sequence or in the 3D

space. These graphs represent either enzyme or non-

enzyme proteins.

� ENZYMES [61] contains 600 protein tertiary structures,

and each enzyme belongs to one of the 6 EC top-level

classes.

� NCI1 & NCI109 [8] comprise of 4110 and 4127

graphs, respectively. The nodes and edges represent

atoms and chemical bonds between them, respec-

tively. They are two balanced subsets of the datasets

of chemical compounds screened for the activities

against non-small cell lung cancer and ovarian cancer

cell lines, respectively. The positive and negative

samples are distinguished according to whether they

are effective against cancer cells.

� IMDB-BINARY [26] is about movie collaboration

including 1000 graphs, which is collected from

IMDB and contains lots of information about differ-

ent movies. Each graph is an ego-network, where

nodes represent actors or actresses and edges indicate

whether they appear in the same movie. Each graph

is categorized into one of the two genres (Action and

Romance).

� D & D [62] contains 1178 graphs of protein structures.

A node represents an amino acid and edges are con-

structed if the distance between two nodes is less than 6

A. A label denotes whether a protein is an enzyme or

non-enzyme.

� COLLAB [39] is a scientific collaboration dataset of

5000 graphs. Each graph corresponds to a research-

ers ego-network, where nodes represent the research-

ers and an edge indicates collaboration relationship

between two researchers. A researchers ego-network

has three possible labels, i.e., High Energy Physics,

Condensed Matter Physics, and Astro Physics, which

are the fields that the researcher belongs to.

B. Feature Extraction Methods

We adopt four typical methods to generate graph represen-

tation, namely manual attributes, Graph2Vec, DeepKernel,

and CapsGNN, which are introduced in the following.

� Attributes: Here, we use the same 11 manual attributes

as those introduced in [27], including the number of

nodes, the number of edges, average degree, network

density, average clustering coefficient, the percentage

of leaf nodes, the largest eigenvalue of the adjacency

matrix, average betweenness centrality, average close-

ness centrality, and average eigenvector centrality.

� Graph2Vec [37]: This is the first unsupervised embed-

ding approach for an entire network, which is based on

the extending word-and-document embedding techni-

ques that has shown great advantages in natural lan-

guage processing (NLP).

� DeepKernel [39]: This method provides a unified

framework that leverages the dependency information

of sub-structures by learning latent representations. The

sub-structure similarity matrix,M, is calculated by the

matrix V with each column representing a sub-structure

vector. Denote by P the matrix with each column repre-

senting a sub-structure frequency vector. According to

the definition of kernel: K ¼ PMPT ¼ PVVTPT ¼
HHT, one can use the columns in the matrix H ¼ PV
as the inputs to the classifier.

� CapsGNN [44]: This method was inspired by Cap-

sNet [63], which adopts the concept of capsules to over-

come the weakness of existing GNN-based graph

embedding algorithms. In particular, CapsGNN extracts

node features in the form of capsules and utilizes the

routing mechanism to capture important information at

the graph level. The model generates multiple embed-

dings for each graph so as to capture graph properties

from different aspects.

C. Parameter Setting

For source node selection, we choose the node of the largest

K-shell [53] as the source node for random walk (RW) and

biased walk (BW), and choose the edge of the largest

betweenness centrality [64]–[66] as the source edge for link

selection (LS). We randomly pick up a node as the source

node for the spanning tree (ST) to increase the diversity of

S2GN, since the sampled subnetworks will be quite similar if

we fix the source node for this method. Moreover, we set the

two parameters of BW as p ¼ 4 and q ¼ 1.
In this study, for Graph2Vec, the embedding dimension is

adopted according to [37]. Since the embedding dimension is

predominant for learning performances, a commonly-used

value of 1024 is adopted. The other parameters are set to

default values: the learning rate is set to 0.5, the batch size is

set to 512 and the number of epochs is set to 1000. For Deep-

Kernel, according to [39], the Weisfelier-Lehman subtree ker-

nel is used to build the corpus and its height is set to 2.

Furthermore, the embedding dimension is set to 10, the win-

dow size is set to 5 and skip-gram is used for the word2vec

TABLE I
BASIC STATISTICS OF NINE DATASETS. NG IS THE NUMBER OF GRAPHS,

#Cmax IS THE NUMBER OF GRAPHS BELONGING TO THE LARGEST CLASS, NC

IS THE NUMBER OF CLASSES, AND #NODES AND #EDGES ARE THE AVERAGE

NUMBERS OF NODES AND EDGES, RESPECTIVELY,
OF THE GRAPHS IN THE DATASET
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model. We adopt the default parameters for CapsGNN and

flatten the multiple embeddings of each graph as the input.

Without loss of generality, the well-known Random Forest

is chosen as the classification model. Meanwhile, for each fea-

ture extraction method, the feature space is first expanded by

using S2GNs, and then the dimension of the feature vectors is

reduced to the same value as that of the feature vector

obtained from the original network using PCA in the experi-

ments, for a fair comparison. Each dataset is randomly split

into 8 folds for training and 2 fold for testing. Here, the

F1-Score is adopted as the metric to evaluate the classifica-

tion performance:

F1 ¼
2PR

P þ R
; (1)

where P and R are the precision and recall, respectively. In

order to diminish the random effect of the fold assignment to

some extent, the experiment is repeated 100 times and then

the average F1-Score and its standard deviation are reported.
We further define the relative improvement rate (RIMP) of

SGN or S2GN model as

RIMP ¼ ðF1model � F1oriÞ=F1ori (2)

where F1ori and F1model refer to the F1-Score of the graph

classification algorithm without and with the SGN model (or

S2GN-Fusion model), respectively.

D. Experimental Results

We use the four network sampling strategies to generate

sampling substructures, and further construct the correspond-

ing 1st-order and 2nd-order S2GNs, denoted by S2GN-RW,

S2GN-BW, S2GN-LS, and S2GN-ST, respectively1. The

above S2GN models integrate the original network, S2GNð1Þ,
and S2GNð2Þ in order to be able to compare reasonably and

fairly with the SGN model (i.e., SGN ð0;1;2Þ). After that, we
adopt the four feature extraction methods, namely manual

attributes, Graph2Vec, DeepKernel, and CapsGNN, to get

structural feature vectors. For each feature extraction method,

we fuse the vectors generated from the different S2GNs to a

single vector. Finally, this vector is fed into the Random For-

est model to produce the classification result. Note that we

also produce the results for a single sampling strategy for a

more comprehensive comparison. Here, a ten-fold cross-vali-

dation method is used to calculate F1-Score of graph classifi-

cation. To enrich the sampling structures and reduce the

probability of sampling repetition, 10 sampling averaging pro-

cesses were carried out for each sampling strategy.

1) Enhancement on Classification Performance: The

experimental results are shown in Table II, where one can see

that the four S2GN models based on a single sampling

strategy, i.e., S2GN-RW, S2GN-BW, S2GN-LS, and S2GN-

ST, are comparable with the SGN model, which all produce

similar classification results under different datasets and fea-

ture extraction methods. Interestingly, S2GN-BW outperforms

SGN in enhancing the classification models based on the four

feature extraction methods in most cases, leading to a relative

improvement of 4.80% on average. Such results are consistent

with the experience that Node2Vec is a powerful method to

capture the structural properties of a network. Moreover, since

different S2GNs generated by different sampling strategies

can capture the different aspects of a network, as visualized in

Fig. 5, one may expect that the fusion of these S2GNs can pro-

duce even better classification results. Indeed, we find that the

fusion of S2GNs increases the performance of the original

graph classification algorithms in 33 out of 36 cases, with a

relative improvement of 9.58% on average (much better than

4.68% by SGN). The value increases to 12.96% (much better

than 2.06% by SGN) when only CapsGNN is considered. This

result is quite impressive, since CapsGNN, together with

S2GN, achieves the state-of-the-art performance on PRO-

TEINS and IMDB-BINARY datasets.

Moreover, we find that compared with other sampling meth-

ods, the experiments based on spanning tree method on

MUTAG have achieved unsatisfactory performance, i.e., the

results on S2GN-ST are overall underperformed than other

models. We think, for certain types of networks, the perfor-

mance of S2GN is related to the sampling strategy. MUTAG

is a dataset of mutagenic aromatic and heteroaromatic com-

pounds containing many benzene rings. Combined with

nitroso, chlorine, carbonyl, and other functional groups, these

benzene ring structures can be used to determine whether the

compound has a mutagenic effect on a bacterium. As we all

know, a spanning tree must meet the following two condi-

tions: (1) contains all nodes in a connected graph, and (2) there

is one and only one path between any two nodes. That is, a

sampling substructure after the spanning tree method does not

contain loops. Therefore, the spanning tree method could

break the benzene ring structures, which are of great signifi-

cance for distinguishing the networks in MUTAG. Once the

ring structures are broken, S2GN-ST could not extract the crit-

ical features to support the graph classification on MUTAG.

One can see that different networks have their own unique

properties and the selection of sampling strategies according

to networks of different types is an importance and valuable

research direction. In future work, we will focus on this point

and explore more matching relationship between different

sampling strategies and various networks.

To address the robustness of our S2GN model against the

size variation of the training set, the F1-Score is calculated by

using various sizes of training sets (from 10 to 90 percent,

within a 20 percent interval). For each size, the training and test

sets are randomly divided, which is repeated 100 times with the

average result recorded. The results are shown in Fig. 6 for vari-

ous feature extraction methods on nine datasets. It can be seen

that still the curves of S2GN-Fusion are relatively higher than

those of S2GNs generated by a single sampling strategy in most

cases, indicating that the superiority of S2GN-Fusion is robust

1 It has been proven that the graph classification models can be signifi-
cantly enhanced by appropriately using the structural information of the SGNs
in the first two orders, while such gain will be reduced soon as more SGNs of
higher orders are integrated [27]. This is why we only use the S2GNs of the
first two orders here.
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in enhancing graph classification algorithms. In particular, such

superiority seems much more significant when enhancing

CapsGNN, which is interesting and may indicate that the poten-

tial of S2GN-Fusion could be exploited further by connecting a

better embedding method or end-to-end graph neural network,

and meanwhile there could be much room for further improve-

ment for graph classification.

2) Reduction of Time Complexity: Note that one important

motivation to introduce sampling strategies into SGN is to

control the network size so as to improve the efficiency of the

network algorithms based upon them. Therefore, here to

address the computational complexity of our method, we

record the average computing time of SGN and S2GN gener-

ated by the four sampling strategies on the nine datasets,

namely MUTAG, PTC, PROTEINS, ENZYMES, NCI1,

NCI109, IMDB-BINARY, D & D, and COLLAB. The results

are presented in Table III, where one can see that, overall, the

computing time of S2GN is much less than that of SGN for

each sampling strategy on each dataset, decreasing from hun-

dreds of seconds to less than 64 seconds. In fact, the comput-

ing time of S2GNs generated by different sampling strategies

is comparable to each other. Considering that S2GN-Fusion

method needs to generate all the four S2GNs, its computing

time is close to the sum of individual ones, which is still less

than 110 seconds. Such results suggest that, by comparing

with SGN, our S2GN model can indeed largely increase the

efficiency of the network algorithms.

In fact, we can estimate the time complexity of our model in

theory. For random walk, it is a computationally efficient sam-

pling method, which only requiresOðjEjÞ space complexity to

store the neighbors of each node in the graph. As for the time

complexity, by imposing graph connectivity in the sample

generation process, random walk provides a convenient mech-

anism to increase the effective sampling rate by reusing

TABLE II
CLASSIFICATION RESULTS MEASURED BY F1-Score ON NINE DATASETS BY USING DIFFERENT FEATURE EXTRACTION METHODS
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Fig. 6. Average F1-Score as functions of the training set size (represented by the fraction of samples in the training set), for various feature extraction methods
on different datasets, based on RW, BW, LS, ST and Fusion, respectively.
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samples across different source nodes. For biased walk, we

adopt the 2nd random walk mechanism of Node2Vec, where

each step of random walk is based on the transition probabil-

ity a which can be precomputed, so the time consuming of

each step using alias sampling is Oð1Þ. Link selection broad-

ens the scope of the start node at each step in the random

walk process, thereby accelerating the time to reach the stop

condition. Kruskal algorithm to generate spanning trees is a

greedy algorithm, which has OðjEjlogðjEjÞÞ time complex-

ity. We know that the computational complexity of SGN ð1Þ

is OðjEj2Þ and that of constructing SGNð2Þ is OðjEj4Þ. Our
S2GN model constrains the expansion of the network scale

and reduces the cost of constructing SGNs to the fixed

OðjEj2Þ. Thus, the time computational complexity T of our

S2GN model is OðjEj þ jEj2Þ � T � OðjEjlogjEj þ jEj2jÞ
according to the different sampling strategies, which is much

lower than that of SGN.

3) Visualization: As a simple case study, we visualize the

results of classification on IMDB-BINARY dataset based on

CapsGNN method to verify the effectiveness of our S2GN

model. Here, we choose S2GN-ST to visualize since this is the

best S2GN generated by the single sampling strategy that

enhances the classification performance of CapsGNN most.

As shown in Fig. 7, the structural features are located in differ-

ent places by utilizing t-SNE. The left shows the original clas-

sification result using CapsGNN without S2GN-ST, while the

right depicts the optimized distribution of the same dataset

using CapsGNN with S2GN-ST. One can see that the graphs

in IMDB-BINARY dataset can indeed be distinguished by the

original features of CapsGNN, but it appears that the distinc-

tion of graphs could become more explicit after network sam-

pling and SGN mapping, demonstrating the effectiveness of

our S2GN model.

V. CONCLUSION

In this paper, we present a novel sampling subgraph net-

work (S2GN) model as well as a structural feature fusion

framework for graph classification by introducing network

sampling strategies into the SGN model. Compared with the

latter, the S2GNs are of higher diversity and controllable scale,

and thus benefit the network feature extraction methods to

capture more various aspects of the network structure with

higher efficiency.

We use different sampling strategies, namely random walk

(RW), biased walk (BW), link selection (LS), and spanning

tree (ST), to generate the corresponding sampling subgraph

networks S2GN-RW, S2GN-BW, S2GN-LS, and S2GN-ST,

respectively. The experimental results show that, compared

with SGN, S2GN has much lower time complexity, which was

reduced by almost two orders of magnitude, and meanwhile

they have comparable effects on graph classification. In fact,

the network algorithms based on S2GN-BW behave even

better than those based on SGN, although each sampling sub-

network is only a part of the original network. More interest-

ingly, when the features of all the four S2GNs are fused and

then fed into graph classification models, the classification

performance can be significantly enhanced. In particular,

when CapsGNN is used to extract the features of these S2GNs,

we can achieve the-state-of-the-art results on the PROTEINS

and IMDB-BINARY datasets.

In the future, we will try more sampling strategies and then

integrate them with SGN to generate more diverse S2GNs; we

will also apply our framework to more tasks beyond graph

classification, such as link prediction, node classification, etc.
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